Lemma 3.5 in Chatterjee (2015) is the main engine for proving SVD-is-a-good-estimator property. Here’s the OG statement from the paper (for full picture of USVT and its estimation correctness, or details about notations, check this blog about USVT proof sketch)
Lemma 3.5 (Chatterjee 2015) Let $A = \sum_{i = 1}^m \sigma_i x_i y_i^T$ be the SVD of $A$. Fix any $\delta > 0$ and define $\hat B$ — an estimator of $B$ using $A$: $$ \hat B := \sum_{i:\sigma_i > (1 + \delta)\Vert A - B\Vert}\sigma_i x_i y_i^T. $$ Then, $B$ and $\hat B$’s (Frobenius) distance can be related with A and B’s spectral distance and B’s nuclear norm: $$ \Vert \hat B - B\Vert_F \le K(\delta)(\Vert A - B\Vert \Vert B\Vert_*)^\frac12 \tag{1} $$ where $K(\delta) = (4 + 2\delta)\sqrt{{2}/{\delta}} + \sqrt{2 + \delta}$.
The paper stated the results $(1)$ in Frobenius norm because in the end mean square root error is considered (MSE = Frobenius norm / m*n). However, to further use USVT and prove some results on top of it we generally prefer intermediate results expressed in spectral norm.
Lemma 3.5.1 (Adapted from Chatterjee 2015) Let $A = \sum_{i = 1}^m \sigma_i x_i y_i^T$ be the SVD of $A$. Fix any $\delta > 0$ and define $\hat B$ — an estimator of $B$ using $A$: $$ \hat B := \sum_{i:\sigma_i > (1 + \delta)\Vert A - B\Vert}\sigma_i x_i y_i^T. $$ Then, $B$ and $\hat B$’s (Frobenius) distance can be related with A and B’s spectral distance and B’s nuclear norm: $$ \Vert \hat B - B\Vert \le (6 + 3\delta)\Vert A - B\Vert. $$
Proof.
Let $B = \sum_{i = 1}^m \tau_i u_i v_i^T$ be the SVD of B. WLOG assume that $\sigma_i$’s and $\tau_i$’s are arranged in decreasing order. Let $$ S:=\lbrace i:\sigma_i > (1 + \delta)|A - B|). $$ Define $$ G :=\sum_{i\in S}\tau_i u_iv_i^T. $$ By definition of $\hat B$ — using $i\in {S}$ components of $A$ estimated — the largest singular value of $A - \hat B$ is bounded above by $(1 + \delta)|A - B|$. Write in math: $$ |A -\hat B| = |\sum_{i\in [m]\setminus S}\sigma_i x_iy_i^T| \le (1 + \delta)|A - B|\tag{1}. $$ On the other hand, by Theorem 3.1 (from the paper):
$$ \max_{i\in [m]}|\sigma_i - \tau _i|\le |A - B|.\tag{3} $$
Consider first $i\notin S$, by $(3)$ and using the fact that $\sigma_i< (1 + \delta)|A - B|, \forall i\notin S$, $$ \tau_i \le \sigma_i + |A - B| \le (2 + \delta) |A - B|\tag{2}, \forall i\notin S. $$ Which leads to $$ |B - G| = |\sum_{i = 1}^m \tau_i u_i v_i^T -\sum_{i\in S}\tau_i u_iv_i^T| = |\sum_{i\notin S}\tau_i u_iv_i^T|\le \max_{i\notin S}\tau_i\le (2 + \delta)|A - B|.\tag{4} $$ Then consider $i\in S$, by $(3)$, and using the fact that $\sigma_i\ge (1 + \delta)|A - B|, \forall i\in S$, $$ \tau_i \ge \sigma_i - |A - B| \ge \delta |A - B| $$ Apply the above and $(1)$ and $(4)$ $$ |\hat B - G|\le |\hat B - A| + |A - B| + |B - G| \le (4 + 2\delta)|A - B|. $$ Lastly, $$ |\hat B - B|\le |\hat B - G| + |B - G|\le (6 + 3\delta )|A - B|. $$