Interestingly, when using implicit updating to solve a continuous time system (of a certain structure), it coincide with Newton’s Method
Setup
Consider a household with state $(a, z) \in \mathcal{A} \times \mathcal{Z}$, where $a$ denotes assets and $z$ follows a Poisson process with intensity matrix $\Lambda$.
Hamilton-Jacobi-Bellman Equation:
$$ \rho v(a,z) = \max_c \left \lbrace u(c) + \partial_a v(a,z) \cdot s(a,z) + \sum_{z’} \lambda_{zz’} v(a,z’) \right\rbrace $$
where savings $s(a,z) = ra + wz - c(a,z)$.
First-Order Condition: $u’(c) = \partial_a v$, yielding $c = (u’)^{-1}(\partial_a v)$.
Kolmogorov Forward Equation: The stationary distribution $g(a,z)$ satisfies $$ 0 = -\partial_a[s(a,z) g(a,z)] + \sum_{x} \lambda_{xz} g(a,x) $$
Market Clearing: $F(p, g) = 0$ for price vector $p$.
Discretization
Discretize the state space on grids $\lbrace a_i\rbrace_{i=1}^{N_a}$ and $\lbrace z_j\rbrace_{j=1}^{N_z}$. Stack values into vectors $\mathbf{v}, \mathbf{g} \in \mathbb{R}^{N_a N_z}$.
The discretized HJB (after substituting the FOC) becomes: $$ \rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v} $$
where:
- $\mathbf{u}(\mathbf{v})$: utility vector with $u_i = u\left((u’)^{-1}(\partial_a v_i)\right)$
- $\mathbf{A}(\mathbf{v}) = \mathbf{A}_s(\mathbf{v}) + \mathbf{A}_z$: transition matrix from upwind finite differences
Key structure: $\mathbf{A}$ has negative diagonal, non-negative off-diagonal entries, and rows summing to zero (a valid intensity matrix).
The Envelope Condition Simplification
Define the residual: $$ \mathbf{F}(\mathbf{v}) \equiv \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v} - \rho \mathbf{v} $$
We seek $\mathbf{v}^$ such that $\mathbf{F}(\mathbf{v}^) = 0$.
Claim: When the envelope condition holds, the Jacobian simplifies to $$ \nabla \mathbf{F}(\mathbf{v}) = \mathbf{A}(\mathbf{v}) - \rho \mathbf{I} $$
Proof sketch: Differentiate the HJB w.r.t. $a$. The envelope theorem implies that the indirect effect of $\mathbf{v}$ through the optimal policy $c(\mathbf{v})$ vanishes:
$$ \frac{\partial}{\partial v_j}\left[ u(c_i) + A_{ik}v_k \right] = {\left(u’(c_i) - \partial_a v_i\right)}\frac{\partial c_i}{\partial v_j} + A_{ij} $$
Thus $\nabla \mathbf{F} = \mathbf{A} - \rho \mathbf{I}$. $\square$
Newton’s Method
Newton’s method solves $\mathbf{F}(\mathbf{v}) = 0$ via: $$ \mathbf{v}^{\ell+1} = \mathbf{v}^\ell - \left[\nabla \mathbf{F}(\mathbf{v}^\ell)\right]^{-1} \mathbf{F}(\mathbf{v}^\ell) $$
Substituting our Jacobian: $$ \mathbf{v}^{\ell+1} = \mathbf{v}^\ell - \left(\mathbf{A}^\ell - \rho \mathbf{I}\right)^{-1} \left(\mathbf{u}^\ell + \mathbf{A}^\ell \mathbf{v}^\ell - \rho \mathbf{v}^\ell\right) $$
where $\mathbf{A}^\ell \equiv \mathbf{A}(\mathbf{v}^\ell)$ and $\mathbf{u}^\ell \equiv \mathbf{u}(\mathbf{v}^\ell)$.
Rearranging: $$ \boxed{\mathbf{v}^{\ell+1} = \left(\rho \mathbf{I} - \mathbf{A}^\ell\right)^{-1} \mathbf{u}^\ell} $$
Implicit Updating
The implicit (backward) time-iteration scheme discretizes the time-dependent HJB: $$ \frac{\mathbf{v}^{\ell+1} - \mathbf{v}^\ell}{\Delta} + \rho \mathbf{v}^{\ell+1} = \mathbf{u}^\ell + \mathbf{A}^\ell \mathbf{v}^{\ell+1} $$
Solving for $\mathbf{v}^{\ell+1}$: $$ \left[\left(\rho + \frac{1}{\Delta}\right)\mathbf{I} - \mathbf{A}^\ell\right] \mathbf{v}^{\ell+1} = \mathbf{u}^\ell + \frac{\mathbf{v}^\ell}{\Delta} $$
Equivalence
Theorem. Implicit updating coincides with Newton’s method in the limit $\Delta \to \infty$.
Proof: As $\Delta \to \infty$, we have $1/\Delta \to 0$, so: $$ \left(\rho \mathbf{I} - \mathbf{A}^\ell\right) \mathbf{v}^{\ell+1} = \mathbf{u}^\ell $$ which is exactly the Newton update. $\square$
Interpretation:
- Finite $\Delta$: partial Newton step with damping factor $\omega = \rho\Delta/(1 + \rho\Delta)$
- $\Delta \to \infty$: full Newton step
- $\Delta \to 0$: explicit method (forward iteration), conditionally stable