A lot of seemingly non-convex optimization problems are de facto convex. For example $$ \begin{align*} \min_{a_i, r_i}& ;\frac{a_i}{r_i}\cr s.t.& ;a_i, r_i \ge0 \end{align*}\tag{1} $$ can actually be massaged into a convex optimization. Let $x_i\ge \frac{a_i}{r_i}$, optimization $(1)$ is equivalent to $$ \begin{align*} \min_{a_i, r_i, x_i}& ;x_i\cr s.t.& ;a_i, r_i \ge0 \end{align*}\tag{2} $$ And is equivalent to $$ \begin{align*} \min_{a_i, r_i, x_i}& ;x_i\cr s.t.& ;\begin{bmatrix} x_i & \sqrt{a_i}\cr \sqrt{a_i}& r_i \end{bmatrix}\succeq0\cr & a_i, r_i \ge 0 \end{align*} $$ So now it’s in Positive Semidefinite (PSD) Programming, and it is convex.

Note: $(1)$ can be extended by adding more fractional variables—$i = 1, \ldots, m$ and more linear constraints. The final converted form will still be convex.