Before we begin, it’s helpful to have this framework in mind: $$ \text{Utility Functions }u(\cdot) \Leftrightarrow\text{Preferences } a \succeq b \Leftrightarrow\text{Choices (aka Data) }(\beta, C) $$ Economists care about how to make the above concepts consistent (i.e. under what assumptions would the above $\Leftrightarrow$ hold mathematically).
Choices and Choice Structures Given a finite set of mutually exclusive alternatives $X$:
Definition. A choice structure is a pair $(\beta, C)$ with
$\beta \subseteq \mathcal{P}(X)$ a family of budget sets, $C : \beta \Rightarrow X$ a choice correspondence such that $C(B) \subseteq B$ for all $B \in \beta$. Example.
$X=\lbrace a,b,c\rbrace $,
$\beta=\lbrace \lbrace a,b\rbrace ,\lbrace a,b,c\rbrace \rbrace $,
$C(\lbrace a,b\rbrace )=\lbrace a\rbrace , ; C(\lbrace a,b,c\rbrace )=\lbrace a,c\rbrace $.
...