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Abstract

Volunteer-based food rescue platforms tackle food1

waste by matching surplus food to communities in2

need. These platforms face the dual problem of3

maintaining volunteer engagement and maximizing4

the food rescued. Existing algorithms to improve5

volunteer engagement exacerbate geographical dis-6

parities, leaving some communities systematically7

disadvantaged. We address this issue by extending8

restless multi-armed bandits, a model of decision-9

making which allows for stateful arms, to incorpo-10

rate context-dependent budget allocation. By do-11

ing so, we can allocate higher budgets to commu-12

nities with lower match rates, thereby alleviating13

geographical disparities. To tackle this problem,14

we develop an empirically fast heuristic algorithm.15

Because such an algorithm can achieve a poor ap-16

proximation when active volunteers are scarce, we17

design the Mitosis algorithm, which is guaranteed18

to compute the optimal budget allocation. Em-19

pirically, we demonstrate that our algorithms out-20

perform baselines on both synthetic and real-world21

food rescue datasets, and show how our algorithm22

achieves geographical fairness in food rescue.23

1 Introduction24

The world wastes up to 40% of our food globally, translating25

to over 1.3 billion tons annually, while 1 in 7 people strug-26

gle to secure enough food every day [Coleman-Jensen et al.,27

2018; Conrad et al., 2018]. With their appearance in over28

100 cities worldwide, food rescue platforms (FRP) receive29

safe, edible food donations from businesses like restaurants30

(“donors”) and distribute them to organizations serving low-31

resource communities (“recipients”). Our partner organiza-32

tion, Food Rescue X1, is a large FRP with operations in over33

25 different cities across the US. FRPs are able to scale due34

to volunteers, who transport food from donors to recipients.35

Essentially, volunteers claim “rescues” from an FRP’s mobile36

app. After claiming the rescue, the app instructs them where37

to pick up and drop off the donation.38

1Real name blinded.

Figure 1: The picture shows volunteers and donation regions in real
food rescue database. Region color indicates the richness of volun-
teer resource. Connected lines indicates how volunteers and real-
time donation tasks are matched by food-rescue platforms.

The inclusion of volunteers in FRPs brings about inherent 39

uncertainty due to changing volunteer behavior. Volunteer 40

engagement is critical to FRP success, so FRPs have an ur- 41

gent need to engage their volunteers while maximizing the 42

amount of food rescued. A few studies have developed al- 43

gorithms to improve volunteer engagement on FRPs by dy- 44

namically notifying volunteers about rescue trips [Shi et al., 45

2021, 2024; Raman et al., 2024]. However Shi et al. [2021] 46

showed that such algorithms can backfire because they result 47

in severe geographical disparity in food rescue outcomes. In 48

some regions such as downtown, the algorithm enjoyed al- 49

most 90% completion rate, while in some outer suburbs, the 50

completion rate dropped to 40%. 51

In our work, we study how to maintain volunteer engage- 52

ment while combatting geographical disparities. The chal- 53

lenge is that volunteer behaviors evolve over time in response 54

to notification patterns. To tackle this issue, we model food 55

rescue volunteer engagement as a restless multi-armed bandit 56

(RMAB) problem, a common model for online resource allo- 57

cation [Mate et al., 2020; Raman et al., 2024]. We extend this 58

model to incorporate geographical disparities with a context, 59



which corresponds to geographic information for each rescue60

trip. We then set notification quotas for different regions so61

certain regions with scarce volunteers have higher budgets.62

Such an approach allows for flexibility in notifications with-63

out sacrificing overall performance.64

We make the following contributions: (1) We propose the65

Contextual Budget Bandit problem, which extends RMABs to66

situations with context-dependent budget allocations. Such a67

problem is motivated by applications in food rescue, but can68

also model problems in domains such as digital farming and69

peer review (see Appendix E). (2) We develop the COcc, a70

fast, empirically approximation algorithm which provides an71

upper bound to Contextual Budget Bandit. We characterize72

cases where it fails with a constant factor; (3) We design the73

Mitosis algorithm which is guaranteed to compute the opti-74

mal budget allocation; and (4) We empirically demonstrate75

that our algorithms improve upon baselines with synthetic76

and real-world food rescue datasets.77

2 Preliminary Background78

A Restless Multi-Armed Bandit (RMAB) is defined by:79

⟨N,S,A, {ri}i∈[N ], {Pi}i∈[N ]⟩.

Each arm i ∈ [N ] := {1, 2, . . . , N} is an independent
Markov Decision Process, with state space Si = {0, 1} and
binary action space Ai = {0, 1}. Action 0 corresponds
to idling the arm while action 1 corresponds to pulling the
arm. The reward function for each arm ri : Si × Ai → R
maps state-action pairs to a reward. Pi is the transition ker-
nel for each arm i. The overall system state at time t is
st = (st1, s

t
2, . . . , s

t
N ), and the decision maker selects action

at = (at1, a
t
2, . . . , a

t
N ) subject to a budget constraint:∑

i∈[N ]

ati ≤ B, ∀ t = 1, 2, . . . ,

which limits the number of arms that can be pulled in every80

time step. The objective is to design a policy that maps the81

current state st to an action vector at that maximizes the av-82

erage reward over all arms and over an infinite time horizon.83

A widely-adopted approach for tackling the computational
complexity inherent in RMABs is the Whittle Index Policy.
The Whittle Index for each arm i’s state si ∈ Si is:

wi(si) = min
w
{w|Qi,w(si, 0) = Qi,w(si, 1)},

84

Qi,w(si, ai) = −wai + ri(si, ai) + γ
∑
s′

Pi[si, ai, s
′]Vi,w(s

′)

Vi,w(s
′) = max

a
Qi,w(s

′, a)

Qi,w(si, ai) represents the expected future reward for play-85

ing action ai, given a penalty w for pulling an arm. Under86

the crucial condition of indexability—which requires that the87

set of states where it is optimal to activate an arm decreases88

monotonically as the subsidy w increases—the Whittle index89

is well-defined and interpretable as the marginal value of ac-90

tivating an arm. At each time step, the Whittle Index Policy91

pulls the B arms with the highest Whittle Indices. In this92

way, it decouples the multi-armed problem into a collection 93

of single-arm problems. The Whittle index policy is asymp- 94

totically optimal under regularity conditions as the number of 95

arms goes to infinity [Gittins et al., 2011]. 96

3 Contextual Budget Bandit 97

Because traditional methods to maintain volunteer engage- 98

ment can lead to geographical disparity [Shi et al., 2021], we 99

pursue an intuitive solution where we allocate different notifi- 100

cation budget to different regions. To do this, we need to aug- 101

ment the standard RMAB model with variability in transition 102

and reward across time, and the flexibility to adjust budget 103

accordingly. In this section, we will introduce the Contextual 104

Budget Bandit model and multiple algorithms for it. 105

3.1 The Contextual Budget Bandit Model 106

A Contextual Budget Bandit (CBB) is defined by the tuple

⟨N,S,A,K, {rki }i∈[N ],k∈[K], {P k
i }i∈[N ],k∈[K],F⟩.

Departing from the standard RMAB model, we introduce the 107

[K] = {1, 2, . . . ,K} (finite) contexts. A Borel measure F 108

on [K] specifies the distribution over these contexts, which 109

is known by the decision maker. At each time step, a new 110

context is sampled with respect to F and globally applies 111

to all arms. rki , P k
i ,∀k ∈ [K] are the reward function and 112

the transition probability kernels specific to context k. F and 113

{P k
i }i∈[N ],k∈[K] are independent. 114

Definition 3.1 (Context Specific Budget Constraint). A pol-
icy is said to satisfy Context Specific Budget Constraint if the
number of arms pulled at each time step is constrained by a
budget Bk contingent on context, while the expected budget
usage is still bounded by B:∑

i∈[N ]

atiI(kt = k) ≤ Bk, ∀t, k, and Ek∼FBk ≤ B.

A policy π for CBB (i) pre-specifies budget allocation B⃗
and (ii) maps the current states of all arms and the context k
to an action vector: π : {S, [K]} 7→ A. The objective is then
to maximize the expected average reward across timesteps,
where the expectation is taken over contexts:

lim
T→∞

Ea∼π,k∼F

[ 1
T

T∑
t=1

∑
i∈[N ]

rki (s
t
i, a

t
i)
]
.

The Whittle Index Policy for standard RMAB satisfies the 115

above Context Specific Budget Constraint (Definition 3.1), 116

because it uses a uniform budget for each context B⃗ = 117

(B, . . . , B). However, its performance can be arbitrarily bad: 118

119

Theorem 1. For a CBB, denote the Whittle Index Policy’s
reward as RVanillaWhittle, and the optimal policy that satisfies
context-specific budget constraint asRContextOpt. There exists
an instance where,

RContextOpt

RVanillaWhittle →∞, as N →∞.



3.2 Contextual Occupancy Index (COcc) Policy120

Having established that the vanilla Whittle Index policy could121

perform arbitrarily bad in CBB, we now develop an efficient122

heuristic algorithm, the COcc. First, we introduce the occu-123

pancy measure.124

Definition 3.2. The occupancy measure µ of a (possibly ran-
domized) policy π in CBB is the average visitation probabil-
ity to a state-action-context tuple (s, a; k):

µi(s, a; k) := Pr [si = s, ai = a; k] ,∀i ∈ [N ].

We next show how we can formulate the problem of max-125

imizing the stationary reward as a linear program (LP) over126

occupancy measures.127

Definition 3.3. For a given contextual-RMAB instance, its128

occupancy-measure LP is129

max
µ

∑
i∈[N ]

∑
k∈[K]

∑
si,ai

µi(si, ai; k)ri(si, ai; k) (1)

s.t. f ′
k

 ∑
k∈[K]

∑
si,ai

P [si → s′i|ai, k]µi(si, ai; k)

 (2)

=
∑
ai

µi(s
′
i, ai; k

′),∀k′, s′i, i (3)∑
k∈[K]

∑
ai,si

µi(si, ai; k) = 1,∀i ∈ [N ] (4)

∑
k∈[K]

∑
i

∑
si

µi(si, 1; k) ≤ B (5)

µi(si, ai, k) ≥ 0,∀i, si, ai, k. (6)

Definition 3.4 (Adapted from [Xiong et al., 2022]). Given
the optimal solution µ⋆(·, ·; k) to the occupancy-measure LP,
the Contextual Occupancy Soft Budget Policy πsoft pulls an
arm i in state si and context with probability χ⋆

i (si, k), where

χ⋆
i (si, k) =

µ⋆
i (si, 1; k)

µ⋆
i (si, 0; k) + µ⋆

i (si, 1; k)
.

The Contextual Occupancy Soft Budget Policy is not130

immediately applicable because the budget constraint in131

Equation 5 is only a relaxed version. Thus, denoting the132

occupancy-measure LP’s objective value asR, we have133

RVanillaWhittle ≤ RContextOpt ≤ R. (7)

The Contextual Occupancy Soft Budget Policy can
achieve a high reward because it can shift budget across time
— by saving up budget at bad context and using them when
context is good. Guided by this insight, we introduce the Con-
textual Occupancy Index Policy (COcc) that mimics the Con-
textual Occupancy Soft Budget Policy, but further satisfies a
context-dependent budget constraint for a set of budgets B⃗:

Bk =
1

fk

∑
i,si

µ⋆
i (si, 1; k), ∀k

where µ⋆ are optimal solutions from occupancy-measure LP.134

Given a context k, to determine which arms to pull, 135

we tend to the dual of the occupancy-measure LP2. Let 136

Vi(si, k),∀i, si, k be the Lagrangian for constraint (2, 3). Let 137

νi,∀i be the Lagrangian multiplier for (4), and ρ for (5). The 138

dual of the occupancy-measure LP is 139

min
V,ρ,ν

∑
i∈[N ]

νi + ρB (8)

s.t. Vi(si, k) + νi ≥ ri(si, ai; k)− ρI{ai = 1} (9)

+
∑
s′i,k

′

Vi(s
′
i, k

′)P [si → s′i|ai, k],∀si, ai, k (10)

ρ ≥ 0 (11)

The solution of the dual of the occupancy-measure LP par- 140

titions every arm’s state-context pair (si, k) into three sets, 141

E0, E1 and E01 where respectively, the optimal action is pos- 142

itive, negative or some randomization.3 143

The optimal Lagrangian multiplier ρ⋆ in the dual problem
can be interpreted as an extra cost for taking the positive ac-
tion (ai = 1). Under indexability, as the cost ρ⋆ increases, the
set of state-context (si, k) in which negative action is optimal
(E0) increases monotonically. Thus, we define the Contex-
tual Whittle Index for each state-context pair (si, k) of each
arm, denoted as ρ⋆i (si, k), as the least value of the cost ρ such
that negative action is optimal:

ρ⋆i (si, k) := sup{ρ : (si, k) ∈ E0}.

With this, we are ready to formally define our COcc. 144

Definition 3.5 (The Contextual Occupancy Index (COcc)
Policy). At each time step, given context k, the COcc pulls
top-Bk arms that have the highest positive Contextual Whittle
Index, where

Bk =
1

fk

∑
i,si

µ⋆
i (si, 1; k),

with µ⋆ being optimal solutions from occupancy-measure LP. 145

Standard RMAB problems correspond to Bk being the 146

same across all k, and in such a situation,the COcc is equiv- 147

alent to the Whittle Index Policy, and is asymptotically opti- 148

mal.4 However, the COcc is not optimal for CBB: 149

Theorem 2. The COcc’s asymptotic approximation ratio 150

compared toRContextOpt is bounded above by 5
6 . 151

The source of the suboptimality comes from when there are 152

more than one contexts. The proof in Appendix C presents an 153

original mathematical framework for asymptotic analysis. 154

2detail of obtaining the dual is in Appendix B
3To avoid uninteresting pathologies, assume every pure policy

gives rise to a Markov chain with one recurrent class, then the ran-
domization set E01 need not contain more than one object [Gittins
et al., 2011].

4The asymptotic notion is usually to repeat all arms of an RMAB
instance infinitely, along with the budget for the same repeats.



3.3 Solving Optimal Budget Allocation Using155

Multi-Armed Bandit Algorithm156

The COcc is suboptimal because it fails to determine the op-157

timal budget allocation B⃗. Yet Contextual Whittle Index can158

still be used given a budget allocation.159

Definition 3.6. A Flexible Budget Allocation COcc deter-160

mines a budget allocation B⃗ ∈ B0 := {B⃗ ∈ NK :161 ∑K
k=1 Bk ≤ B} given a total budget B and context prob-162

abilities f⃗ , and pulls the Bk arms with the highest Contextual163

Whittle Index, ρ∗i (si, k).164

Our goal is thus to find the optimal budget combination165

B⃗∗ from the set of feasible budget allocations B0. Within the166

class of Flexible COcc(s), each budget allocation B⃗’s reward167

can be evaluated according to an Oracle function:168

Definition 3.7 (Oracle). The Oracle is a randomized simula-169

tion procedure that, given a budget allocation B⃗ ∈ NK , runs170

the Flexible COcc using B⃗ and returns the resulting reward.171

It has two parameters:172

• Epochs: number of times simulation is repeated.173

• T: the length of each simulation run.174

Oracle gives us an estimate of policy performance, but it is175

slow. Meanwhile, we can obtain upperbounds for each bud-176

get allocation by inserting the following constraint into the177

occupancy-measure LP in Definition 3.3:178

1

fk

∑
i,si

µi(si, 1; k) = Bk ∀Bk ∈ B⃗. (12)

Given budget allocation B⃗, let LP(B⃗) be the optimal value of179

occupancy-measure LP with constraint (12) inserted.180

We next design two algorithms to find the best budget al-181

location by querying the Oracle and LP for a small subset of182

budget combinations, avoiding an exponential enumeration.183

The Branch And Bound Algorithm Since LP(B⃗) ≥184

Oracle(B⃗),∀B⃗, we design a Branch And Bound approach185

to efficiently search over the feasible solution space: it re-186

cursively splits the search region into smaller subregions and187

prunes subregions if its LP-based upperbound is lower than188

another’s actual reward. Although Branch And Bound is still189

NP-hard in the worst case, it provides a systematic way to ef-190

ficiently search. We provide the pseudocode (Algorithm 2) in191

appendix F.192

The Mitosis Algorithm While Branch And Bound already193

cuts down the search tree dramatically compared to brute194

force search, it still calls too many costly Oracle evaluations195

on large-scale problems. To address this issue, we develop the196

following multi-armed bandit (MAB) framework which al-197

lows for more nuanced speed-accuracy trade-off for the eval-198

uation of budget allocations:199

Definition 3.8 (MAB on top of Contextual-RMAB). We de-200

fine an associated Multi-Armed Bandit (MAB) problem by201

identifying each arm with a vector B⃗ ∈ B0. Pulling arm B⃗202

invokes the fast oracle Oraclesmall(B⃗) which returns a noisy203

reward r(B⃗).204

A standard UCB-type algorithm maintains empirical statis-
tics for each arm and computes an index that serves as an up-
per confidence bound on the arm’s true reward. For each arm
B⃗ and time t, its upper-confidence-level index is given by

It(B⃗) := µ̂t(B⃗) + f
(
Nt(B⃗), t

)
,

where Nt(B⃗) is the number of times arm B⃗ has been selected
and µ̂t(B⃗) the empirical mean reward from B⃗. f is chosen
so that, with high probability, It(B⃗) is an upper bound on the
true mean reward µ(B⃗). For example, the classical UCB1
algorithm sets

f
(
Nt(B⃗), t

)
= c

√
log t

Nt(B⃗)
, for c > 0.

Addressing the Combinatorial Explosion with StemArm 205

Naively applying UCB to our setting would result in com- 206

binatorial explosion, so we incorporate the hierarchical tree 207

structure from Branch And Bound to speed up our algorithms. 208

A StemArm is a special arm that represents a group of candi- 209

date budget allocations. Instead of tracking every B⃗, we use 210

StemArm to encapsulate less-promising budget allocations, 211

which are grouped in polytope regions Bm ⊆ B0. Formally, 212

Definition 3.9 (StemArm). A StemArm represents a union of
regions

StemArm = ∪Mm=1Bm.

When the StemArm is pulled, it splits out a most promising
daughter arm:

B⃗new := argmax
B⃗∈StemArm

LP(B⃗),

And updates itself by partitioning the subregion that contains 213

B⃗new to exclude it from the StemArm: 214

Let B⋆ := the subregion containing B⃗new.

Split B⋆ = {B⃗new} ∪ Bnew1
∪ Bnew2

,

replace B⋆ with Bnew1
,Bnew2

Notice that all arms B⃗ ∈ StemArm (before they are split 215

out) are never pulled, so they have no empirical history for 216

UCB value. Instead the StemArm’s UCB index is assigned 217

as the upperbound of all its arms maxB⃗∈StemArm LP(B⃗). For 218

convenience, denote it as LP(StemArm). Note that be- 219

cause every pull of the StemArm splits out the daughter 220

arm with the highest LP value, the StemArm’s UCB index 221

LP(StemArm) decreases during the Algorithm when it splits 222

everytime. 223

Putting the MAB framework and StemArm together, the 224

Mitosis algorithm operates as follows. We begin the MAB 225

with the candidate arms containing only a StemArm, repre- 226

senting the entire feasible region B0. At each round, the al- 227

gorithm selects from candidate arms (either a standard arm B⃗ 228

or a StemArm) with the highest UCB index. When a standard 229

arm is pulled, we run rt(B⃗) ← Oraclesmall(B⃗) to update its 230

empirical statistics. When a StemArm is selected, it splits out 231



a new arm into candidate arms and we pull it. We present232

pseudocode in Algorithm 1. The Mitosis algorithm is named233

for how the StemArm ‘buds’ new arms progressively during234

the algorithm, similar to cell division in mitosis.235

Finally, we establish that our approach retains the no-regret236

guarantees of classical MAB algorithms:237

Theorem 3. [No-Regret of the Mitosis Algorithm] LetA de-
note the set of arms that have been pulled. After running the
algorithm for T rounds, the cumulative regret

R(T ) ≜
T∑

t=1

(µ⋆ − µt)

satisfies

R(T ) =
∑
B⃗∈A

E[NT (B⃗)]∆(B⃗) = O

(∑
B⃗∈A

log T

∆(B⃗)

)
,

which matches the UCB1 regret bound.238

To sum up, the the Mitosis marries the no-regret MAB al-239

gorithms with the StemArm structure. We leverage a faster240

but noisy oracle Oraclesmall and use a no-regret MAB algo-241

rithm to guide the explore. The combinatorial explosion in242

the number of arms is addressed by grouping less-promising243

arms into StemArm.244

4 Experiments245

We evaluate our proposed policies on two types of data: syn-246

thetic and real. In the following sections, we describe the ex-247

perimental setup and report results separately for each case.248

4.1 Experiments on Synthetic Data249

Setup We formulate the food rescue volunteer notification250

problem as an instance of the Contextual Budget Bandit. In251

this setting, there are K regions (food-donation sources) and252

N volunteers who can be notified to pick up a donation. Fig-253

ure 1 Provides an illustrative example. At each epoch t ≤ T ,254

a trip arises from some region k ∈ [K], and the decision is to255

notify a set of volunteers via actions ati, taking into account256

their current states sti and the region context.257

The states of volunteers are governed by the following tran-258

sition dynamics:259

• Only active volunteers (si = 1) can pick up tasks260

(ri(0, ai; k) = 0 for all i, ai, k).261

• A notified volunteer (ai = 1) is more likely to pick up a262

task, i.e., ri(1, 1; k) ≥ ri(1, 0; k) for all i, k.263

• A notified volunteer is more likely to become inactive:

Pi[s
t+1
i = 0 | si, ai = 1] ≥ Pi[s

t+1
i = 0 | si, ai = 0].

The decision maker’s reward is defined as the total expected264

pick-up rate over all volunteers.265

Volunteer Activity We describe the construction of two266

synthetic setups that capture different volunteer dynamics in267

the food rescue problem (details in Appendix D.1)268

Algorithm 1 Mitosis
Input: Feasible region B0, LP upper-bound function LP, fast
oracle Oraclesmall
Auxiliary: UCB-type no-regret algorithm It(·)
Output: Budget allocation B⃗∗ with high empirical re-
ward

1: Initialize:
• Initialize StemArm := {B0}.
• Candidate set (heap) A ← {StemArm}.
• Set time t← 0.

2: while t < T and stopping condition not met do
3: Select from candidate set w.r.t. UCB index:

a∗ ← argmax
a∈A

It(a),

4: if a∗ is a standard arm (i.e., corresponds to a specific
B⃗) then

5: Pull arm and observe reward rt(a
∗) ←

Oraclesmall(B⃗).
6: Update the empirical statistics Nt(a

∗) and µ̂t(a
∗).

7: else
8: // a∗ is a StemArm; splits out and pull new arm.
9: StemArm splits arm a∗ to obtain a new standard arm

a′ with allocation B⃗a′ = B⃗new.
10: Pull new arm a′.
11: Insert a′ into the candidate set: A ← A∪ {a′}.
12: end if
13: t← t+ 1, update the candidate set A with It+1(·).
14: end while
15: return The allocation B⃗∗ corresponding to the arm in A

with the highest empirical mean reward.

• High Activeness The N volunteers and K regions 269

are randomly distributed over a two-dimensional plane. 270

Each volunteer’s decision to pick up a task is influenced 271

by factors such as region popularity, distance, and per- 272

sonal engagement history. 273

• Low Activeness We introduce more challenging condi- 274

tions. by partitioning the K a subset of nasty regions and 275

its complement. In nasty regions, volunteers experience 276

high pick-up rates that tend to deactivate them quickly, 277

whereas in the remaining regions the rates are signifi- 278

cantly lower. 279

The Effect of Volunteer Abundance and Budget on 280

COcc’s Performance Activity reflects the scarcity of vol- 281

unteer resources. We can systematically vary the abundance 282

of volunteers by tuning an abundance ratio ρAbundance ∈ [0, 1]: 283

ρAbundance of the N volunteers follow the High Activeness dy- 284

namics, while the remainder operate under the Low Active- 285

ness dynamics. 286

We systematically vary Abundance ρAbundance and budget B 287

to compare the performance between COcc against the opti- 288

mal Mitosis Algorithm, and plot the heatmap of COcc’s per- 289

formance in Figure 2. When the volunteer resource is scarce 290
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Figure 2: Reward ratio of COcc vs. Mitosis for [20] arms and [3]
contexts across 32 seeds, varying Budget (vertical) and Abundance
Ratio (horizontal). Red indicates near-optimal performance; blue
indicates underperformance.
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Figure 3: Main synthetic experiment with 50 arms, 3 contexts, 0.1
budget proportion, and 50% abundance. Bars show mean reward
(left) and runtime (right) over 32 seeds. Mitosis yields the highest
reward at significantly lower computation than Branch And Bound.

(low ρAbundance) or the notification budget B is small, COcc291

tends to lag behind compared to Mitosis (see top-left blue292

cells of Figure 2, where the reward ratio is almost close to 0).293

Low budget and low ρAbundance show joint degrade effect for294

COcc.295

Main Experiment For food rescue problem formulated as296

CBB using synthetic data, we compare our proposed policies297

(CBB and Mitosis) with several benchmarks: Random policy298

that selects arms uniformly at random; Greedy policy that se-299

lects arms with the highest immediate reward ri(s
t
i, 1, k), the300

aforementioned Vanilla Whittle policy from standard RMAB,301

and Branch And Bound. We report cumulative reward nor-302

malized by Random and runtime, measured in seconds.303

In a representative synthetic instance (50 arms, 3 contexts,304

budget= 5, 50% abundance), we run main experiments for305

the six aforementioned policies across 32 seeds (100 trials306

each). As shown in Figure 3 Mitosis (purple) achieves the307

highest reward overall, while Branch And Bound (gray) is308

also strong but much slower. The simpler baselines (Greedy,309

Random, Vanilla Whittle, and COcc), though taking almost310

no time to run, provide moderate to lower rewards, with the311

COcc notably underperforming at this abundance level.312

Ablation Studies on synthetic data are conducted us-313

ing 32 seeds by varying the number of volunteers (N =314

Figure 4: Ablations on Synthetic Data: Changing # Volunteers (First
Row) and # budget (Second Row).

100, 200), the number of regions (K = 5, 10) and budgets 315

(B = 2, 10) respectively. Figure 4 shows the rewards of 316

the various algorithms when varying N and B. Due to page 317

limit, we defer the time plots and other reward plots to Ap- 318

pendix D.2. The Mitosis and Branch And Bound policies 319

consistently perform best. COcc’s performance, as the scale 320

of the problem increases in either N,K,B, catches up with 321

optimal, indicating that COcc performs generally better in 322

larger scale problems. 323

Overall, in synthetic food rescue CBB problem, Mitosis 324

provides optimal reward comparative to Branch And Bound 325

with modest runtime. COcc—though much faster—does not 326

fully match Mitosis’s optimal performance, and catches up as 327

the problem scales up. 328

4.2 Experiments on Real Data 329

The experimental framework for real data mirrors that of 330

the synthetic instance. The key difference is that the vol- 331

unteers’ and regions’ attributes (historical engagement, loca- 332

tion, and other idiosyncratic factors) are obtained from real- 333

world datasets. We sample from a total pool of more than 500 334

thousand volunteers to construct the CBB instance. The state 335

transitions and reward definitions remain identical to those 336

described for synthetic data, ensuring that the same policies 337

can be fairly compared across both domains. 338

We evaluate the same set of policies as in the synthetic ex- 339

periments: COcc, Mitosis, Random, Greedy, Vanilla Whittle, 340

and Branch And Bound. The main experiment on a Real In- 341

stance is run using 32 seeds with 100 trials per seed (Figure 5 342

and performance is measured in terms of the normalized re- 343

ward (total accumulated reward divided by that of the random 344

policy). 345

On real data, the context-aware methods (COcc, Branch 346

And Bound and Mitosis) outperform Greedy, Random and 347

Vanilla Whittle. Branch And Bound yields the highest av- 348

erage reward but requires disproportionately longer runtimes. 349

By contrast, Mitosis nearly matches Branch And Bound while 350

significantly reducing computation. Notably, COcc catches 351

up with Mitosis—confirming it benefits from real-world at- 352

tribute structure. The policies’ performance trend is sim- 353
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Figure 5: Experiment on real data. Bars show mean reward (left) and
runtime (right) across 32 seeds (hatched to distinct real food rescue
data). COcc, Branch And Bound and Mitosis perform equally well.
Branch And Bound takes significantly more time to reach optimal.

ilar when we vary the number of volunteers, the number354

of regions and budget level in the ablation studies (see Ap-355

pendix D.2 for details). This implies in application, COcc is356

sufficient for near-optimal performance. Mitosis guarantees357

optimality and is significantly faster than Branch And Bound.358

5 Case Study: Fairness in Food Rescue359

Geographical disparity in Food Rescue Food rescue360

organizations potentially suffer from geographic disparity361

where harder-to-reach areas are ignored. Over time, this can362

turn into a form of algorithmic discrimination, where cer-363

tain regions or demographics are consistently underserved.364

We build on prior work that analyzes proportional fairness in365

RMABs [Li and Varakantham, 2022a; Wang et al., 2024; Li366

and Varakantham, 2022b; Killian et al., 2023] and develop367

a natural proportional fairness definition to enforce fairness368

across contexts in CBB. The intuition is that a region’s re-369

ward should be at least a fraction θ of the total reward370

multiplied by the region’s occurrence probability.371

Definition 5.1 (θ-Fair). For a contextual-RMAB instance, a372

budget allocation B⃗ is θ-Fair if the reward for each context373

divided by the occurrence probability of the context, is at least374

a fraction θ of its scaled share of the total reward in the solu-375

tion of occupancy-measure LP (1):376

θ

(∑
i

∑
k

∑
si,ai

µi(si, ai; k)ri(si, ai; k)

)
︸ ︷︷ ︸

total reward

(13)

≤ 1

fk

∑
i

∑
si,ai

µi(si, ai; k)ri(si, ai; k)︸ ︷︷ ︸
reward for type k

, ∀k. (14)

θ ranges on [0, 1] and it tunes the fairness level. When θ =377

0 no fairness is imposed, while θ = 1 enforces full fairness.378

For a fixed θ, the θ-Fair definition is linear in µ(·, ·; ·). Hence,379

we can incorporate it into occupancy-measure LP and solve380

for a budget allocation B⃗ satisfying the θ-constraint, using381

estimates from the COcc.382
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Figure 6: Pareto frontiers (θ vs. reward). Volunteer distance-
sensitivity is shown in different line style. Heightened sensitivity
makes fair solutions more costly in terms of total reward in real data.

Insights from Real Data Experiment We study how in- 383

creasing fairness constraints (θ ∈ [0, 1]) affect total reward, 384

plotting this trade-off as a Pareto frontier in Figure 6 for both 385

synthetic (left) and real (right) instances. A critical parame- 386

ter in our model is volunteers’ sensitivity to distance, which 387

reduces pick-up rates for more remote locations. When sen- 388

sitivity increases, it becomes harder to serve distant or under- 389

served areas. As the fairness parameter θ grows under higher 390

distance sensitivity, total reward declines more sharply. 391

6 Related Works 392

Restless Multi-Armed Bandits is a model of decision- 393

making which extends multi-armed bandits so each arm has 394

a state. While finding optimal actions for an RMAB is an 395

NP-hard problem [Papadimitriou and Tsitsiklis, 1994], early 396

work in the RMAB space proposed the Whittle index pol- 397

icy [Whittle, 1988] and demonstrated the asymptotic optimal- 398

ity of such a policy [Weber and Weiss, 1990a]. RMABs have 399

seen increased attention recently due to its applicability for a 400

range of real-world problems from maternal health [Mate et 401

al., 2022] to food rescue [Raman et al., 2024] to autonomous 402

vehicles [Li et al., 2021]. Within contextual RMABs, lines of 403

work include Bayesian transitions [Liang et al., 2024], global 404

contexts for demand modeling [Chen et al., 2024], and using 405

neural networks to predict indices [Guo and Wang, 2024]. 406

Our work can be seen as an intersection between the appli- 407

cation and technical lines of work, as we extend RMABs to 408

varying budget contextual settings and apply these ideas to 409

the food rescue domain. 410

Food Rescue are volunteer-driven organizations focusing 411

on redistributing food Shi et al. [2020]. Prior works fre- 412



quently utilize AI to model volunteer engagements [Man-413

shadi and Rodilitz, 2020; Raman et al., 2024], predicted trip414

difficulties [Shi et al., 2024], and developed a recommender415

system for matching volunteers [Shi et al., 2021]. We build416

on the volunteer engagement literature and address the is-417

sue of geographic disparity reported by prior work Shi et al.418

[2021].419

Fairness is an increasingly important consideration in both420

business and non-profit organizations Bertsimas et al. [2012];421

Liu and Garg [2024]. For RMAB, fairness is typically im-422

posed on individual arms: Wang et al. [2024] define fairness423

as requiring a minimum long-term activation fraction for each424

arm; Li and Varakantham [2022b] propose a soft fairness con-425

straint, or by setting an upperbound on the number of deci-426

sion epochs since an arm was last activated (Li and Varakan-427

tham [2022a]). Fairness can also be defined over groups of428

arms. Killian et al. [2023] study minimax and max-Nash429

welfare objectives by imposing fairness on groups of arms,430

and Verma et al. [2024] enforce fairness with respect to the431

reward outcomes across groups. To the best of our knowl-432

edge, although RMABs with contextual information have433

been previously studied, our work is the first to consider fair-434

ness with respect to context.435
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Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-437

time analysis of the multiarmed bandit problem. Mach.438

Learn., 47(2–3):235–256, May 2002.439

Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis.440

On the efficiency-fairness trade-off. Management Science,441

58(12):2234–2250, 2012.442

Xin Chen, I Hou, et al. Contextual restless multi-armed ban-443

dits with application to demand response decision-making.444

arXiv preprint arXiv:2403.15640, 2024.445

Alisha Coleman-Jensen, Matthew P Rabbitt, Christian A Gre-446

gory, and Anita Singh. Household food security in the447

united states in 2017. USDA-ERS Economic Research Re-448

port, 2018.449

Zach Conrad, Meredith T Niles, Deborah A Neher, Eric D450

Roy, Nicole E Tichenor, and Lisa Jahns. Relationship be-451

tween food waste, diet quality, and environmental sustain-452

ability. PloS one, 13(4):e0195405, 2018.453

John Gittins, Kevin Glazebrook, and Richard Weber. Restless454

Bandits and Lagrangian Relaxation, chapter 6, pages 149–455

172. John Wiley & Sons, Ltd, 2011.456

Zhanqiu Guo and Wayne Wang. Contextwin: Whittle index457

based mixture-of-experts neural model for restless bandits458

via deep rl. arXiv preprint arXiv:2410.09781, 2024.459
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A Proof of Theorem 1553

Theorem 1. For a CBB, denote the Whittle Index Policy’s
reward as RVanillaWhittle, and the optimal policy that satisfies
context-specific budget constraint asRContextOpt. There exists
an instance where,

RContextOpt

RVanillaWhittle →∞, as N →∞.

Proof. Consider a CBB instance with N stochastically iden-554

tical arms. For simplicity we assume that the transition prob-555

abilities are such that each arm is always active (si = 1).556

Let there be two contexts, where context 1 occurs with prob-557

ability f1 = 1 − 1
N and context 2 occurs with probabil-558

ity f2 = 1
N . For each arm i, context 1 generates reward559

ri(si = 1, ai = 1) = 1
N , context 2 generates reward560

ri(si = 1, ai = 1) = N . Suppose budget B = 1.561

Consider the policy that leaves all arms idle at context 1,562

and pulls all N arms at context 2. The policy is feasible be-563

cause its budget constraint B⃗ = (0, N) satisfies f1×0+f2×564

N = 1
N ×N = 1 = B. Its average reward is N .565

For Vanilla Whittle Index Policy, the good context 2 that566

has the high reward only occurs with probability 1
N . And567

when it happens, we can only pull and get reward from one568

arm. So its average reward is (1− 1
N ) 1

N + 1
N ×N = O(1).569

As N → ∞, the gap between the two policies goes to infin-570

ity.571

B Dual of the occupancy-measure LP572

Proof. Let Vi(si, k),∀i, si, k be the Lagrangian for con-573

straint (2, 3). Let νi,∀i be the Lagrangian multiplier for (4),574

and ρ for (5). The dual of the occupancy-measure LP (1) is575

min
V,ρ,ν

∑
i∈[N ]

νi + ρB (15)

s.t. Vi(si, k) + νi ≥ ri(si, ai; k)− ρI{ai = 1} (16)

+
∑
s′i,k

′

Vi(s
′
i, k

′)P [si → s′i|ai, k],∀si, ai, k (17)

ρ ≥ 0 (18)
Then it is to show that for every (si, k) combination, at576

least one inequality in (16) is tight. By complementary slack-577

ness, a pair of optimal primal-dual variables (µ⋆;V ⋆, ν⋆, ρ⋆)578

would satisfy µ⋆
i (si, ai; k) > 0 only if constraint (16) is tight.579

(Assume non-degeneracy that every state-action si, k is of580

positive occupancy measure) for any arm i and state-context581

pair (si, k), at least one action ai needs to be chosen, i.e.582

∃ai, µ⋆
i (si, ai, k) > 0, which implies that583

V ⋆
i (si, k) + ν⋆i =ri(si, ai; k)− ρ⋆I{ai = 1}

+
∑
s′i,k

′

V ⋆
i (s

′
i, k

′)P [si → s′i|ai, k].

Combined with the rest of ai ∈ A and inequalities in 16,584

we have585

V ⋆
i (si, k) + ν⋆i = max

ai∈{0,1}
(ri(si, ai; k)− ρ⋆I{ai = 1}

+
∑
s′i,k

′

V ⋆
i (s

′
i, k

′)P [si → s′i|ai, k]).

586

C Proof of Theorem 2 587

Theorem 2. The COcc’s asymptotic approximation ratio 588

compared toRContextOpt is bounded above by 5
6 . 589

Proof. Outline First, we formally establish the asymptotic 590

framework, which is where the Whittle Index Policy for stan- 591

dard RMAB achieves optimality. Then we introduce how to 592

analyze CBB’s in this asymptotic regime. Finally, we present 593

the instance where the 5
6 bound is achieved. 594

Asymptotic Notion 595

We define the asymptotic notion for analyzing (sub- 596

)optimality for CBB. It is same to the approach for standard 597

RMAB, originally proposed by Weber and Weiss [1990b] for 598

RMAB with stochastically identical arms and generalized to 599

heterogeneous arms by Xiong et al. [2022]: 600

Definition C.1 (ρ-scaled CBB). Fix a Base CBB instance
with M arms

⟨M,S,A,K, {rki }i∈[M ],k∈K, {P k
i }i∈[M ],k∈K,F⟩.

With budget B ∈ N. 601

Now, consider each arm being replicated ρ times, with the 602

budget scaled by ρ as well. The new CBB instance has ρ×M 603

arms, with each of the M arms in the base CBB repeated ρ 604

times. Budget is scaled to ρB. 605

For a base contextual RMAB instance scaled with ρ, when
there is no confusion about the base instance we’re referring
to, denote its reward for any policy π as

Rπ(ρ) := lim
T→∞

Ea⃗∼π(·),k∼F

[ 1
T

T∑
t=1

∑
i∈[ρM ]

rki (s
t
i, a

t
i)
]
.

For ρ-scaled CBB, notice that its reward upperbound from
solving the occupancy-measure LP (1) simply scales with ρ:

R(ρ) = ρR(1).

We refer to every arm i ∈ [M ] in the base instance as a 606

type-i arm, and its ρ replicates in the ρ-scaled CBB as the ρ 607

type-i arms. 608

Asymptotic System Behavior for CBB 609

In the following section we introduce a new method for ana- 610

lyzing the asymptotic behavior of CBB as ρ→∞. It is differ- 611

ent from the standard approach of Weber and Weiss [1990b]. 612

To ease the complication of notations, we describe our 613

method with CBB that ri(si = 0, a = 0; k) = ri(si = 614

0, a = 1; k) = 0,∀i, k, and transition probabilities P k
i s

t+1
i | 615

sti, a
t
i = 1] = P k

i s
t+1
i | sti, ati = 0],∀st+1

i , sti. In this way it 616

is meaningless to pull inactive arms, since it makes no differ- 617

ence in rewards nor transition probabilities. Generalization to 618

general CBB is without loss of generality. 619

We care about the proportion of active arms as ρ → ∞ 620

of the ρ. The following technical lemma characterizes the 621

dynamic of arms: 622



Lemma 1. Denote as ati the proportion of type-i active arms623

at any time point t under given policy π. Conditional on ati624

and context k, at+1
i ’s distribution converges to a Direc Delta625

function δshift(·), shifted with E[at+1
i | ati, k] as the total num-626

ber of arms ρ→∞. In other words,627

f(at+1
i | ati, k) = δE[at+1

i |at
i,k]

(at+1
i ), (19)

where, let Bi,k be the number of active type-i arms pulled by628

the policy at context k:629

E[at+1
i | ati, k] = min(ati,

Bi,k

ρ
)P k

i s
t+1
i = 1 | sti = 1, ati = 1]

(20)

+ (ati −min(ati,
Bi,k

ρ
) (21)

× P k
i s

t+1
i = 0 | sti = 1, ati = 1] (22)

+ (1− ati)P
k
i s

t+1
i = 1 | sti = 0] (23)

Proof. The sketch of the proof is that, the number of active630

arms is sum of Binomial random variables, with parameters631

given the by the policy and transition probabilities. As total632

number of arms ρ→∞, each Binomial variable divided by ρ633

converges to (shifted) Direc Delta. Therefore, the proportion634

of active arms is also (shifted) Direc Delta.635

Notes on Binomial Distribution To make later analysis636

clear, first consider a single binomial random variable X with637

N experiments and success rate p (i.e. X ∼ Bin(N, p)). For638

any x ∈ [0, 1] (assume Nx is integer):639

P [X = Nx] =

(
N

Nx

)
pNx(1− p)N(1−x)

Apply Stirling’s Formula: n! ∼
√
2πn · (n

e
)n

=

√
1

x(1− x)N
·
(
(
p

x
)x(

1− p

1− x
)(1−x)

)N

It can be verified that ( px )
x( 1−p

1−x )
(1−x) < 1 for x ̸= p. There-

fore, as N →∞

P [X = xN ] =


√

1
x(1−x)N →∞ x = p√

1
x(1−x)N

×O(
(
( px )

x( 1−p
1−x )

(1−x)
)N

)→ 0 x ̸= p

Therefore, say if we let f(x) = P [X = xN ], f(·) is a640

shifted-to-p Direc Delta function.641

Stationary Distribution Contextual Budget Bandit Let642

At
i := atiρ denote the number of active type-i arms at time643

point t. Conditional on current At
i and context k,644

• min(At
i, Bi,k) arms are pulled, where each arm remains645

active w.p. P k
i s

t+1
i = 1 | sti = 1, ati = 1].646

• Each of ρ−At
i inactive arms transfers back to active w.p.647

P k
i s

t+1
i = 1 | sti = 0],648

Therefore, the number of active arms at next period At+1
i is 649

the sum of three binomial random variables: 650

{At+1
i | At

i, k} (24)

∼ Bin(min{At
i, Bi,k}, P k

i s
t+1
i = 1 | sti = 1, ati = 1])︸ ︷︷ ︸

active arms pulled staying active

(25)

+ Bin(At
i −min{At

i, Bi,k}, P k
i s

t+1
i = 1 | sti = 1, ati = 0])︸ ︷︷ ︸

idle active arms staying active

(26)

+ Bin(ρ−At
i, P

k
i s

t+1
i = 1 | sti = 0])︸ ︷︷ ︸

inactive arms transfer back to active

. (27)

Scaled by ρ → ∞, each of the above binomial distribu- 651

tion converges to a Direc Delta function centered on its 652

mean. Since adding up random variables is equivalent to tak- 653

ing convolution of their probability mass functions—Direc 654

Delta functions are closed under convolution—random vari- 655

able at+1
i =

At+1
i

ρ ’s probability mass function is a Direc Delta 656

shifted by 1
ρE[A

t+1
i | At

i, k]. 657

The lemma implies, the proportion of active arms ati evolve 658

“almost deterministically”—more precisely speaking, fix any 659

policy π, if at current time step the proportion of active arms 660

is ati, context is k, the next time step will have (E[at+1
i | 661

ati, k])% active arms almost surely, where (E[at+1
i | ati, k]) is 662

given by the following: 663

E[at+1
i | ati, k]

=
1

ρ
E[At+1

i | At
i, k]

=
1

ρ
E[Bin(min{At

i, Bi,k}, P k
i s

t+1
i = 1 | sti = 1, ati = 1])︸ ︷︷ ︸

active arms pulled

+ Bin(At
i −min{At

i, Bi,k}, P k
i s

t+1
i = 1 | sti = 1, ati = 0])︸ ︷︷ ︸

untouched active arms

+ Bin(ρ−At
i, qi)︸ ︷︷ ︸

inactive arms

]

=
1

ρ
(min{At

i, Bi,k} · P k
i s

t+1
i = 1 | sti = 1, ati = 1]

+ (At
i −min{At

i, Bi,k}) · P k
i s

t+1
i = 1 | sti = 1, ati = 0]

+ (ρ−At
i)qi)

Denote βi,k :=
Bi,k

ρ : 664

E[at+1
i | ati, k] (28)

= min(ati, βi,k) · P k
i s

t+1
i = 1 | sti = 1, ati = 1] (29)

+max(ati − βi,k, 0) · P k
i s

t+1
i = 1 | sti = 1, ati = 0]

(30)

+ (1− ati)P
k
i s

t+1
i = 1 | sti = 0] (31)

If, current time step’s proportion of active arms is x ∈ 665

[0, 1], with probability fk context k occurs, then the next time 666



step’s active-arm proportion will be y = E[at+1
i | x, k] (as667

given in 29-31) w.p. fk. And for each y, define its inverse668

X (y) := {(x, k) : E[at+1
i | x, k] = y}. (32)

Denote the stationary distribution of proportion of active arms669

as π : [0, 1]→ [0, 1], it should satisfy:670

π(y) =
∑

(x,k)∈X (y)

fkπ(x). (33)

C.1 A 5/6 Approximation Upperbound.671

An adversarial instance Consider a base CBB example672

with only one type of arm (i.e., M = 1). Let there be ρ673

copies of this arm in the scaled setting as ρ → ∞. We drop674

the index i for convenience. Suppose there are two contexts,675

k ∈ {1, 2}, each occurring with probability f1 = f2 = 0.5.676

Let ϵ > 0. The transition probabilities and rewards are677

defined as follows.678

• Context 1: transition probabilities is679

P 1[st+1 = 1 | s = 1, a = 1] = 1− ϵ

P 1[st+1 = 0 | s = 1, a = 1] = ϵ

P 1[st+1 = 1 | s = 1, a = 0] = 1

P 1[st+1 = 0 | s = 1, a = 0] = 0

P 1[st+1 = 1 | s = 1,∀a = 0, 1] = 1

P 1[st+1 = 0 | s = 1,∀a = 0, 1] = 0

reward for context 1:680

r(st = 1, at = 1; k = 1) = 1

r(st = 1, at = 0; k = 1) = 0

r(st = 0, at = 1; k = 1) = 0

r(st = 1, at = 0; k = 1) = 0

• Context 2: transition probabilities is681

P 2[st+1 = 1 | s = 1, a = 1] = 0

P 2[st+1 = 0 | s = 1, a = 1] = 1

P 2[st+1 = 1 | s = 1, a = 0] = 1

P 2[st+1 = 0] | s = 1, a = 0] = 0

P 2[st+1 = 1 | s = 1,∀a = 0, 1] = 1

P 2[st+1 = 0 | s = 1,∀a = 0, 1] = 0

reward for context 2:682

r(st = 1, at = 1; k = 1) = 1 + ϵ

r(st = 1, at = 0; k = 1) = 0

r(st = 0, at = 1; k = 1) = 0

r(st = 1, at = 0; k = 1) = 0

Bugdet Assume that budget is 1/3 of the number of total683

arms. I.e. in the ρ-scaled instance, B = ⌊ 13⌋. As the scaling684

factor ρ→∞, we can without loss of generality assumes that685

it’s an interger.686

The Reward for COcc The occupancy-measure LP for the 687

base instance simplifies to 688

max
µ,Bk

µ(1, 1, 1) + µ(1, 1, 2)(1 + ϵ)

subject to
(1− P [s = 1]) = ϵµ(1, 1, 1) + µ(1, 1, 2)

µ(1, 1, k) ≤ 1

2
P [s = 1],∀k = 1, 2

µ(1, 1, 1) + µ(1, 1, 2) ≤ 1

3

The COcc then allocate budget following the optimal solu- 689

tion (µ⋆) of the occupancy-measure LP. For the ρ-scaled CBB 690

with total budget B = 1
3ρ, the budget allocation of COcc is 691

B1 = ρ× 1

f1
µ⋆(1, 1, 1) = 0,

B2 = ρ× 1

f2
µ⋆(1, 1, 2) =

2

3
.

From (29-31) we obtain, as ρ → ∞, the transition dynamic 692

of the proportion of active arms xt → xt+1 in RMAB: 693

• With probability f1 = 0.5, context k = 1:

xt+1 = E[at+1
i | xt, k] = 1;

• With probability f2 = 0.5, context k = 2:

xt+1 = E[at+1
i | xt, k] = max(xt − 2

3
, 0) + 1− xt.

From 32 and 33 we obtain the stationary distribution π un- 694

der Policy⋆: (actually, guess-and-verify) 695

π(
1

3
) =

1

3
,

π(
2

3
) =

1

6

π(1) =
1

2
,

π(x) = 0, otw.

When the proportion of active arms= 1
3—only half of the 696

budget is utilized. This happens, as give above, w.p. π( 13 ) = 697
1
3 . So the reward as ρ→∞ is 698

RCOcc(ρ)

= f2(
1

3
ρπ(

1

3
) +

2

3
ρ(π(

2

3
) + π(1))

= 0.5ρ(
1

9
+

4

9
) =

5

18
ρ

Optimal Budget Allocation However, notice that the other
context k = 1 is almost always active (it has probability p = ϵ
of transfer to inactive). Therefore, if we allocate all budget to
context 1:

B1 =
2

3
, B2 = 0

. The stationary reward for the optimal budget allocation is

RContextOpt(ρ) =
1

3
ρ



Therefore, the COcc’s approximation is bounded above by
5
6 .

lim
ρ→∞

RCOcc(ρ)

RContextOpt(ρ)
=

5

6
.

699

C.2 Remark: Closed-form unavailable700

Ending remark for this Appendix section, and as a comple-701

ment to the asymptotic analysis of CBB, we provided the702

following example, where, the closed-form solution of the703

staionary distribution of the proportion of active arms can704

only be calculated numerically but not characterized in clean705

closed-form as the above example.706

Single-Type Base Example 2 Consider a base CBB exam-707

ple with only one type of arm (i.e., M = 1). Let there be ρ708

copies of this arm in the scaled setting as ρ → ∞. We drop709

the index i for convenience. Suppose there are two contexts,710

k ∈ {1, 2}, each occurring with probability f1 = f2 = 0.5.711

Transition Probabilities and Rewards. Let ϵ > 0. The712

transition probabilities and rewards are defined as follows.713

Transition Probabilities and Rewards. Let ϵ > 0. The714

transition probabilities and rewards are defined as follows.715

• Context 1: Transition probabilities:716

P 1[st+1 = 1 | s = 1, a = 1] = 1− ϵ,

P 1[st+1 = 0 | s = 1, a = 1] = ϵ,

P 1[st+1 = 1 | s = 1, a = 0] = 1,

P 1[st+1 = 0 | s = 1, a = 0] = 0,

P 1[st+1 = 1 | s = 0,∀a = 0, 1] =
1

2

P 1[st+1 = 0 | s = 0,∀a = 0, 1] =
1

2

Rewards:717

r(st = 1, at = 1; k = 1) = 1,

r(st = 1, at = 0; k = 1) = 0,

r(st = 0, at = 1; k = 1) = 0,

r(st = 0, at = 0; k = 1) = 0.

• Context 2: Transition probabilities:718

P 2[st+1 = 1 | s = 1, a = 1] = 0,

P 2[st+1 = 0 | s = 1, a = 1] = 1,

P 2[st+1 = 1 | s = 1, a = 0] = 1,

P 2[st+1 = 0 | s = 1, a = 0] = 0,

P 2[st+1 = 1 | s = 0,∀a = 0, 1] =
1

2

P 2[st+1 = 0 | s = 0,∀a = 0, 1] =
1

2

Figure 7: Calculated stationary distribution.

Rewards: 719

r(st = 1, at = 1; k = 2) = 1 + ϵ,

r(st = 1, at = 0; k = 2) = 0,

r(st = 0, at = 1; k = 2) = 0,

r(st = 0, at = 0; k = 2) = 0.

Budget Constraint. Assume the budget in each round is a 720

fraction of the total number of arms. For concreteness, let the 721

budget be 722

B =
⌊
1
4 ρ
⌋
,

so that we may activate at most ⌊ρ4⌋ arms (out of ρ). As ρ→ 723

∞, we can assume without loss of generality that B = ρ
3 is 724

an integer. 725

The occupancy-measure LP simplifies to 726

max
µ,Bk

µ(1, 1, 1) + µ(1, 1, 2)
(
1 + ϵ

)
subject to 1

2

(
1− P [s = 1]

)
= ϵ µ(1, 1, 1) + µ(1, 1, 2),

µ(1, 1, k) ≤ 1
2 P [s = 1], ∀ k ∈ {1, 2},

µ(1, 1, 1) + µ(1, 1, 2) ≤ 0.25

The optimal solution is P ⋆[s = 1] = 0.5, µ⋆(1, 1, 1) = 727

0, µ⋆(1, 1, 2) = 0.25. Similarly, COcc would allocate budget 728

so that 729

B1 = 0,

B2 = 0.5ρ.

Therefore, from 32 and 33 we obtain for the stationary dis- 730

tribution π: 731

π(y) =


0 y ∈ (0, 1

4 )
1
2π(

1
2 ) y = 1

4
1
2π(1− 2y) + 1

2π(2y) y ∈ ( 14 ,
1
2 ]

1
2π(2y − 1) y ∈ ( 12 , 1].

(34)

It doesn’t have a clean closed-form solution. But the station- 732

ary of proportion of active arms (π(·) can be solved numeri- 733

cally, as shown in Figure 7. As shown in Figure 7, for non- 734

trivial probability, the proportion of active arms is less than 735

0.5—less than the required active arms to pull. The station- 736



ary reward can be calculated as737

RCOcc

=

∫ 1

0

∑
k

fkr(k)ρmin(βk, x)π(x) dx

= ρ

∫ 1

0

1

2
(1 + ϵ)min(

1

2
, x)π(x) dx

≈ ρ(1 + ϵ)0.214.

However, notice that the other context k = 1 is almost al-738

ways acive (it has probability p = ϵ of transfer to inactive).739

Therefore, if we allocate all budget to it—almost all arms740

will be active all the time, and reward of r(1) = 1 can be741

accured at every pull. By back-on-the-envelope calculation,742

under this budget allocation (all to context 1) the system gen-743

erate (almost) exactly 1
4 reward. Therefore, this instance give744

an lowerbound of 0.214/0.25 = 0.856 impossibility lower-745

bound for the LP-induced budgets.746

D Experiment Details: Design and747

Implementation748

D.1 Low/High Activeness in Synthetic Food749

RescueCBB750

We blend two types of synthetic setups to merge and simulate751

different dynamics in formulating the food rescue CBB:752

High Activeness753

In the High Activeness instance, N volunteers and K re-
gions are randomly positioned on a two-dimensional plane.
Each volunteer and region is associated with a location and
attributes—namely, volunteer activeness, region popularity,
and a historical record Hi (which, in turn, influences the con-
text probabilities fk). For every volunteer i and region k, we
define the pick-up rate as

pi,k = exp

(
α popk − γ d(i, k) + β

|Hi|
Hmax

)
,

where754

- α is the parameter capturing the influence of region pop-755

ularity (with popk denoting the popularity of region k), - γ756

is the distance sensitivity parameter (with d(i, k) represent-757

ing the distance between volunteer i and region k), - β is the758

parameter reflecting volunteer activeness (with |Hi| being the759

size of volunteer i’s history), and - Hmax is a normalization760

constant.761

Transition dynamics are such that an active volunteer (state762

s = 1) who is notified (action a = 1) picks up the task with763

probability pik and may then become inactive. The immedi-764

ate reward for a notification is a function of region popularity765

and pik.766

Low Activeness767

In addition to the High Activeness instance, we define a Low768

Activeness instance to capture more challenging dynamics769

within the CBB framework. It is motivated by the scenario770

that induces the theoretical 5/6 inefficiency for COcc in The-771

orem 2 (see Appendix C.1 for details).772

Figure 8: Ablation Experiments on Synthetic Food Rescue Experi-
ments, Varying Number of Volunteers

The K regions are partitioned into nasty regions (Knasty ⊊ 773

[K] and its complement. The nasty regions are adversarially 774

designed such that, for any volunteer i, the pick-up probabil- 775

ities pik for k ∈ Knasty are drawn uniformly around a high 776

mean (e.g., centered at 0.95), making these regions very at- 777

tractive and yielding a high probability of transitioning a vol- 778

unteer to an inactive state. In contrast, for regions k /∈ Knasty 779

(the “cheap” regions), the transition probabilities are concen- 780

trated around a low mean (e.g., centered at 0.05). Recov- 781

ery probabilities qi for volunteers are generated around a pre- 782

scribed mean (e.g., 0.2). Moreover, the reward structure is 783

modified so that notifications in nasty regions yield a slightly 784

elevated immediate reward (e.g., 1 + ε) to reflect their al- 785

lure despite the adverse long-term effect. This construction 786

presents a challenge for COcc theoretically, as shown in the 787

proof of Theorem 2 in its proof in Appendix C.1. 788

Blended Instance 789

Finally, we construct a Blended Instance that merges High
Activeness and Low Activeness dynamics. A fraction
ρAbundace ∈ [0, 1] (termed the sensitivity ratio) of the N volun-
teers is designated to follow Low Activeness dynamics, while
the remaining N −Nactive volunteers follow High Activeness
dynamics. Formally, we set

Nactive = ⌊ρAbundaceN⌋,
and generate two independent instances over the same set of 790

K regions: 791

(i) A high activity instance with Nactive volunteers. The 792

transition dynamics and rewards are constructed as de- 793

scribed in Section D.1 794

(ii) A low activity instance with N−Nactive volunteers, con- 795

structed as described in Section D.1. 796

D.2 Ablation Experiments on Synthetic Food 797

Rescue Instance 798

Below, we summarize the ablation study results on synthetic 799

data, where we systematically vary the number of volunteers 800

(N), the number of regions (K), and the budget (B). 801

• Varying number of volunteers for N = 50, 100, 200, 802

fix K = 3 regions and budget be 5% number of vol- 803

unteers (Figure 8): As N increases, Mitosis (purple) 804



Figure 9: Ablation Experiments on Synthetic Food Rescue Experi-
ments, Varying Number of Contexts

Figure 10: Ablation Experiments on Synthetic Food Rescue Exper-
iments, Varying Budget

Figure 11: Ablation Experiments on Real Food Rescue Experi-
ments, Varying Number of Volunteers

Figure 12: Ablation Experiments on Real Food Rescue Experi-
ments, Varying Number of Contexts

Figure 13: Ablation Experiments on Synthetic Food Rescue Exper-
iments, Varying Budget



consistently leads in reward and remains much faster805

than Branch And Bound (gray). Note that in N = 200806

both Branch And Bound and Mitosis reach the time limit807

(600s) and is terminated, but sill within the same time808

limit, the Mitosis’s solution is more than that of Branch809

And Bound’s, demonstrating that Mitosis is much faster.810

COcc (green) still lags in reward, indicating it does not811

fully exploit the increased volunteer pool.812

• Varying number of regions for K = 3, 4, 5, fix num-813

ber of volunteers N = 50, budget B = 5 (Figure 9):814

With more regions, the search space for budget increases815

exponentially. Branch And Bound maintains a slight re-816

ward edge but at a steep runtime cost, it times out already817

at k = 4. Mitosis remains best and is faster compared to818

Branch And Bound. COcc gains some benefit but con-819

tinues to underperform compared to the optimal.820

• Varying budget B = 2, 4, 6, fix volunteers N = 50,821

regions K = 3 (Figure 10): Increasing B allows822

more notifications, boosting Mitosis substantially while823

also helping COcc close some of the gap. Once again,824

Branch And Bound yields top-tier rewards but incurs825

much higher computation time.826

D.3 Ablation Experiments on Real Food Rescue827

Data828

Similar as synthetic data’s ablations, we systematically vary829

the number of volunteers (N), the number of regions (K),830

and the budget (B) of CBB constructed on real food rescue831

data. Results are shown in832

• Figure 11: changing N = 20, 50, 100 while maintain833

number of regions K = 3, budget B = 2.834

• Figure 12: changing K = 3, 4, 5 while maintaining835

number of regions N = 20, budget B = 2.836

• Figure 13: changing B = 2, 4, 6 while maintaining837

number of volunteers N = 20, number of regions K =838

3.839

As the scale of the instance increases (N,K or B increases),840

Vanilla Whittle performance grows worse compared to COcc,841

Branch And Bound, Mitosis which they perform similarly.842

This shows that (i) when the scale of the problem increase,843

it is necessary to introduce context-aware policies to reach844

optimal performance (ii) in application, COcc is sufficient for845

near-optimal performance. Mitosis guarantees optimality and846

is significantly faster than Branch And Bound.847

E Generalizability to Other Application Areas848

While we ground our methodological work in food rescue849

volunteer engagement, the Contextual Budget Bandit model850

and its algorithms are applicable to a variety of domains. In851

this section, we describe a few of these applications.852

Digital agriculture Smallholder farmers in the global south853

feed their countries yet are vulnerable to climate change and854

market fluctuation. Agriculture chatbots are a promising di-855

rection to empower smallholder farmers, as evidenced, for856

example, in an NSF report [Guérin et al., 2024]. In collabo-857

ration with Organization X, we have a chatbot which sends858

Algorithm 2 Branch And Bound
Input: Feasible Region B0, LP, Oracle
Output: Budget Allocation B⃗∗

1: Initialize: ROPT ← −∞, B⃗OPT ← None, Queue Q ←
{B0}.

2: while Q ̸= ∅ do
3: Dequeue B ← Q.pop().
4: if LP(B) < ROPT then
5: continue.{prune B}.
6: end if
7: B⃗∗ ← B⃗LP(B) {most promising B⃗ ∈ B}
8: if Oracle(B⃗∗) > L∗ then
9: Update L∗ ← Oracle(B⃗∗) and B⃗OPT ← B⃗∗.

10: end if
11: Branch: Partition B = B1 ∪ B2
12: Q← Q ∪ {B1,B2}.
13: end while
14: return B⃗∗.

out regular nudges about farming practices to over 10,000 859

farmers in India, Kenya, and Nigeria. However, nudges of 860

different topics have different conversion rates. Pest control 861

tips during the pest season address an urgent problem, usually 862

resulting in high conversion rates. Meanwhile, watering tips 863

are preventive measures, which often have lower conversion 864

rates by the farmers. Thus, when planning the engagement 865

strategy over time, one would want to assign different nudg- 866

ing budgets to different topics of nudges, and model it as a 867

CBB. Each farmer is an arm. At each time step, we have a 868

nudge topic as context, and we decide on a budget of how 869

many farmers to notify and the arm selection of who to no- 870

tify. Rewards are determined based on farmer’s engagement 871

response. 872

Peer review In peer review, journals select reviewers for 873

submissions where selection impacts future reviewer avail- 874

ability [Payan and Zick, 2021]. For a given paper, the goal 875

is to select a subset of available reviewers with the relevant 876

subject-matter expertise. However, submissions differ from 877

one another. For example, submissions that are extra long, 878

that involves heavy theoretical analysis, or that do not study 879

the trendy topics might have lower chance of getting review- 880

ers to agree to review. Thus, when the editor plans review- 881

ing invitations over time, they would want to send different 882

numbers of invitations to different kinds of submissions, and 883

model it as a CBB. Each potential reviewer is an arm. At 884

each time step, we have a submission type as context, and we 885

decide on a budget of how many potential reviewers to reach 886

out to, and the arm selection of who to reach out to. Rewards 887

are determined based on the reviewers’ response. 888

F Pseudocode for Branch And Bound 889

Algorithm 890



G No-Regret Guarantee for the Mitosis891

Algorithm892

In the MAB framework each arm represents a candidate bud-893

get allocation B⃗ from the feasible set894

B0 ≜
{
B⃗ ∈ NK :

K∑
k=1

Bk ≤ B
}
.

Pulling an arm B⃗ corresponds to calling the fast oracle895

Oraclesmall(B⃗) (with epoch = 1) which returns a noisy es-896

timate of the reward µ(B⃗). Thus, by running a Multi-Armed897

Bandit (MAB) algorithm over the arms B⃗ ∈ B0 we aim to se-898

lect the arm with the highest expected reward without having899

to estimate µ(B⃗) for every B⃗.900

Definition (Reward Regret). Let901

µ⋆ ≜ max
B⃗∈B0

µ(B⃗)

and denote by B⃗t the budget allocation (arm) chosen at time902

t. Then the instantaneous regret at time t is903

∆t ≜ µ⋆ − µ(B⃗t),

and the cumulative (reward) regret over a time horizon T is904

defined as905

R(T ) ≜
T∑

t=1

∆t =

T∑
t=1

(
µ⋆ − µ(B⃗t)

)
.

The goal is to design an algorithm whose cumulative regret906

grows sublinearly in T ; that is, R(T )
T → 0 as T →∞. In our907

setting, the optimal budget allocation B⃗⋆ (with µ(B⃗⋆) = µ⋆)908

will be identified as T increases.909

Theorem 3. [No-Regret of the Mitosis Algorithm] LetA de-
note the set of arms that have been pulled. After running the
algorithm for T rounds, the cumulative regret

R(T ) ≜
T∑

t=1

(µ⋆ − µt)

satisfies

R(T ) =
∑
B⃗∈A

E[NT (B⃗)]∆(B⃗) = O

(∑
B⃗∈A

log T

∆(B⃗)

)
,

which matches the UCB1 regret bound.910

Proof. The proof is built on the classical UCB1 analysis of911

Auer et al. [2002]. In the Mitosis Algorithm (Algorithm 1),912

each arm B⃗ is initialized with its upperbound LP(B⃗). The913

algorithm maintains two types of arms:914

• Unpromising arms: Arms that are encapsulated in915

StemArm, who has not yet been pulled. Their index is916

given by LP(B⃗).917

• Candidate arms: Arms that have been pulled at least
once. For these, the UCB index at time t is defined as

It(B⃗) = µ̂t(B⃗) + c

√
log t

Nt(B⃗)
,

where µ̂t(B⃗) is the empirical mean, Nt(B⃗) is the num- 918

ber of pulls, and c > 0 is a constant. 919

The algorithm runs for T rounds; by the end, let A denote 920

the final set of candidate arms. We consider two cases based 921

on the location of the optimal arm B⃗⋆. 922

Case 1: B⃗⋆ ∈ A. In this case, the optimal arm has been 923

pulled at least once. Therefore, the candidate arms A form a 924

sub-MAB instance where we can directly apply UCB1’s re- 925

gret bound on; the arms in StemArm are not pulled anyway, 926

so they do not contribute to regret. Standard UCB1 analy- 927

sis (using a peeling argument and concentration inequalities, 928

see Auer et al. [2002]) shows that the expected pulls on any 929

suboptimal arms, denoted by Nt(B⃗), satisfy 930

E[Nt(B⃗)] = O

(
log t

∆(B⃗)2

)
. (35)

Thus, the regret incurred by arms in A is

R(T ) =
∑
B⃗∈A

E[NT (B⃗)]∆(B⃗) = O

(∑
B⃗∈A

log T

∆(B⃗)

)
.

931

Case 2: B⃗⋆ /∈ A. We prove that this case will never hap- 932

pen by contradiction. In other words, the optimal arm that 933

represents the optimal budget solution for CBB will also be 934

budded out by the StemArm in Mitosis algorithm, as the time 935

horizon is sufficiently large. 936

Let B⃗2nd := argmaxa∈A µ(a) be the arm with the highest
mean in the candidate arms. Since the number of pulls for all
other suboptimal arms satisfies (35), the number of pulls for
B⃗2nd grows linearly with t:

E[NT (B⃗
2nd)] = T −O(log T ).

Since B⃗⋆ ∈ StemArm, by the end of the algorithm, the
StemArm’s index (LP(StemArm))is smaller than the UCB in-
dex of B⃗2nd. Since B⃗⋆ ∈ StemArm, we have

LP(StemArm) ≥ LP(B⃗⋆) ≥ µ(B⃗⋆).

then, the event that the suboptimal arm B⃗2nd’s UCB index 937

be strictly greater than the optimal arm’s mean µ(B⃗⋆): for 938

µ(B⃗⋆) > µ̂T (B⃗
2nd), 939

Pr
[
IT (B⃗

2nd) ≥ µ(B⃗⋆)
]

(36)

= Pr

[
µ̂T (B⃗

2nd) + c

√
log(O(T ))
NT (B⃗2nd)

≥ µ(B⃗⋆)

]
(37)

≤ exp

{
−O(T )(µ(B⃗

2nd)− µ(B⃗⋆))2

c′

}
(38)

(39)



The probability declines exponentially. Since the probabil-
ity of the event in Case 2 decays exponentially with T , its
contribution to the overall expected regret is negligible com-
pared to the regret in Case 1. In other words, with probability
tending to one as T → ∞, the optimal arm B⃗⋆ is eventually
pulled and becomes a candidate arm. Therefore, the overall
expected regret of the Mitosis algorithm is dominated by the
regret incurred in Case 1, and we have

R(T ) = O

(∑
B⃗∈A

log T

∆(B⃗)

)
.

Overall the regret of Mitosis is controlled by the classical940

UCB1 guarantee, up to a constant factor, and hence the algo-941

rithm achieves near-optimal performance. This completes the942

proof.943

944
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